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OPTICAL GUIDING BY PLASMA WAVES IN THE
PLASMA BEAT WAVE ACCELERATOR

I. Introduction

tecentlv lnuch interest has arisen in plasma based accelerator schemes, such as tile

plasma hcat wax- accelerator' (1P13 WA), for producing ultra -high energy electrons. This

has led to a renewed interest in the study of the propagation of intense radiation beauis

through a plasma. 2 -
7 In the PBWA two colinear radiation beams of frequencies w] ,wO

are incident on a uniform plasma. By appropriately choosing the difference in the laser

frequencies to be approximately the electron plasma frequency ep, A,,, = I-- '

..P, where L,: ,w2 / < 1, it is possible for the radiation beat wave to resonantly drive

large anplitude electron plasma waves. In the ideal wave breaking limit,8 the maximumii

acceierating electric field is given by E0 .b = (nc/c)Lp _ \/-- eV/'cn where 77 is the plasma

densitv in cm-3 . For example, n _ 1016 cm "
- gives E,,,h -- 100 MeV/cni wlich implies

that an electron, under ideal conditions, may be accelerated to 1 TeV in 100 meters.

To realize such an acceleration scheme it, is necessary that the radiation beams prop-

agate at high intensity over distances large compared to the Rayleigh length ZR = ,or,/2c.

where r, is the radiation spot size. In vacuum, radiation diffracts over distancos on the

order of ZR, which can be relatively short. Hence, in order to maintain high intensity

beams it is necessary to rely on focusing enhancement (optical guiding) from the plasma.

P reviously, the effects of relat-vistic self-focusing' 3 on the radiation beams in the

PBWA were examined. 4 Specifically, it was shown that, relativistic effects may lead to

optical guiding of the radiation beams provide the power in one or both of the beams

approached or exceeded the critical power3 Pc, -- 17(w/wp) 2 GVW'. The previous work,

however, neglected the effects of the resonantly driven plasma wave and., hence, the results

inay only be applied to the leading edge of the radiation beams in which the plasma

wave is sufficiently small. For the regions of the radiation beams in which there exists a

sufficiently large plasma wave, the effects of this plasma wave on the diffractive properties

of the radiation beams cannot be neglected. It has bee ,. erved in experiments (Joshi et

al. 5 ) and in simulations (Mori et al. 6 ) that the presem the resonantly driven plasma

wave can result in enhanced focusing of the radiation bcams. This problem was also

addressed in the numerical work of Gitbbon and Bell, 7 and their results wil be discussed

more fully in the following sections.

Time presei., work concerns the effects of the resonantly driven plasna wave on th,

diffractive properties of the radiation beams in he PT WA. Specifically, a theoretical model

is developed which describes under what conditions the plasna wave nay lead to eni ianced
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focusing of the radiation beanis in the PIM\A. This model assumes that the power in

the radiation beams is sufficientlv far below the critical power P",, so that the effects

of relativistic self-focusing may be neglected. It is shown below that a plasma wave of

sufficiently large amplitude (with phase velocity rph c) will fend to break tvp a radiation

beam into periodic axial "beamlet" sections (of period Ap) in which sections of length

A',,'2 remain optically guided whereas tne remainder of the radiation beam continually

diffracts. The optically guided beanlet sections occur at the minima in electron density

of the plasma wave. Provided the mismatch between the radiation beat frequency and the

ambient plasma frequency corresponds to an optimal choice, the plasma wave may lead to

focusing enhancement of the radiation beams in the PBWA.

II. Optical Guiding in an Externally Generated Plasma Wave

The physical mechanism for producing optical guiding using a plasma wave (with

11ph - c) is similar to the mechanism for producing optical guiding using a density channel.

Heuristically, this may be understood by considering the index of refraction 77 of a radi-

ation beam in a plasma with spatial density variations. Refractive optical guiding is the

result of modifying the radial profile of the index of refraction 77(r) such that it, exhibits a

maximum on axis Or/Or < 0. Refractive guiding of a radiation beam along axis becomes

possible provided On/Or < 0. Neglecting the relativistic effects, the index of refraction for

a radiation beam of frequency w is given by r7(r) :- 1 - (w'o/w)2 n(r)/(2no), where wpo is

the electron plasma frequency in the ambient plasma density no and where (.Vo0/w.) 2 < < 1

has been assuned. Hence, an electron density profile n(r) which exhibits a minimum on

axis leads to 077/Or < 0. In such a way a density channel may be used to optically guide

a radiation beam.

In order to help determine how the plasma wave in the PBWA affects the optical

guiding of the radiation beams, it is instructive to consider a simpler model problem

which consists of a single radiation beam propagating in the presence of an externally

generated plasma wave. For simplicity, the density variation bn of the plasma wave is

assumed to have a Caussian radial profile and a phase velocity equal to the speed of light.

bn(r. z,f) =n 0 exp(-r 2/r') sin kpo(z - c), where rp represents the radius of the plasma

wave, kp0  wpo/c and bno , 0. Physically, the qualitative diffractive properties may be

understood by considering the index of refractim,, which for this case iq given by

7 1-oK 0 2 2 ) [+ / 7 on/n) exp (-r r,) sin k 0 ( z - c H

Provi(ied bnn is sufficiently large, one expects the radiation beami to be focused (01j/,r - 0O
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over regions where sinkpo(z ct) <, 0 (which corresponds to decreases in the electron

density) and defocused (Oil/Or . 0)in regions where sin kp0 (z-ct) 1-> 0 (which corresponds

to increases in the plasma density).

To determine how large tbno needs to be in order to achieve optical guiding in regions

where sinkp0 (z - c) < 0, an evolution equation for the spot size r,(z,t) of the radia-

tion beam must be derived. This is done by applying the source dependent expansion9

(SDE) to the reduced wave equation for the radiation field, a, was done previously for

the case of relativistic optical guiding.4 For the present case, however, relativistic effects

are ignored and the perpendicular current appearing in the wave equation is given by

J, -evq (no + n(r, z, t)], where Vq = cal is the nonrelativistic electron quiver velocity
in the normalized vector potential of tle radiation field al = cA±/(mc2 ). Introduc-

ing the independent variables ( z - ct and r = t, and assuming that the radiation

field is adequately described by the lowest order Gaussian mode of the SDE expansion,

a _- (aorso/r,)exp(-r 2 /r2), then the evolution equation for the radiation spot size is

02 4c 4 [ + 2  0 sin kP0  (
w92U2 r O no (1 + 2r~/ 2 1r

The first term on the right of the above equation represents vacuum diffraction whereas

the second term represents the diffractive properties of the plasma wave.

The above equation indicates that optical guiding becomes possible. in regions cei-

tered around = -7r/2 ± 2jir (where j is an integer), provided

-)o , P (3)no zr ;-2

where 2 = 2r2/r2 and Apo = 27rc/wpo is the ambient plasma wavelength. Once the above

inequality is satisfied, focusing occurs in regions centered about ( = -7r/2 ± 2jir. This

focusing continues until the spot size r, decreases to the point where ( becomes sufficiently

large such that the above inequality is no longer satisfied, thus leading to diffraction. In

such a way the spot size r, (in regions centered about ( = -7r/2 ± 2jr) oscillates about

some matched beam radius and, hence, the radiation is guided. This matched bean radius

r.,i given locally by

r;m (K 2r {kPorp U-sin kpo() 1nn/. 4)'

Notice in regions where sinp0( . 0, the radiation beanr diffracts at a rate greater than

vacuum Rayleigh diffraction. It should be pointed out that Eq. (3) also indicates the dept h

3



required for a Gaussian density channel to provide optical guiding of a radiation btain.

Likewise, Eq. (4) gives the mtched beam radius for a Gaussian density channel when

-7r2.

This model problem illustrates how a plasma wave of sufficiently !argo amplitude (such

that n "non0 satisfies the above inequality) breaks up an initially uniform radiation beam

into "bealnlets" centered about z - ct -r/2 - 2jfr which remain optically guided as

they propagate. In the limit (6no/no)k2or2/(1 + (2)2 1, the optically guided beamlets

occur in the regions sin kp0o < 0, whereas the regions sin kp0o - 0 continually diffract.

This behavior is illustrated schematically in Fig. 1.

By performing appropriate averages in C over a plasmr, wavelength, it is possible

to define global properties of the radiation envelope. For example, performing a power

weighted average of r,(() over a plasma wavelength defines the effective global spot size r,

for the radiation beam. For the case illustrated in Fig. 1, the global spot size ., remains

optically guided even though the actual beam envelope r, contains periodic regions of width

Ap/,.2 which continually diffract. Such global descriptions, which result from averaging over

a plasma wavelength, remove the beamrlet structure of the radiation beam. This removal

of the beamlet structure through averaging is important in the following discussions.

III. Optical Guiding in a Resonantly Generated Plasma Wave

In an actual PBWA, optical guiding of the radiation beams is more complicated

since the plasma wave is directly produced by the radiation beams. Roughly speaking.

the density oscillation of the plasma wave in the PBWA is of the form =(r. ,r)

bih(r,(,r)sin(AO+0), where AOis the beat phase of the two radiation beams A¢ = ol-62,

where 61.2 = k,, 2 Z - L01 ,2 f is the phase of one of the beams (k is the wavenumber) and

where 0 is the shift in the phase of the plasma wave away from the radiation beat phase.
In the small amplitude limit, initially bh 1 - ai ja2jk (where ( is a measure of the distance

from the head of the radiation beams) and 0 - 0. As the plasma wave amplitude grows,

however, relativistic effects associated with the axial motion of the plasma electrons cause

0 to monotonically increase. Saturation occurs when 0 = r/2, the point at which the

plasma wave is 940" out of phase with the radiation beat wave and is no longer resonantly

amplified. By introducing a small frequency mismatch" Awn into the radiation beams

such that ZA. = bpo + Awo, the point at which 0 = 7r/2 may be extended (to a point

furtlher behind the head of the radiation beams) which results in a larger amplitude of the

saturated plasma wave. An optima] choice' 0 of A.\w 0  '7' leads to the maximun value
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for the plasma wave electric field at saturation, Ez = E' In fact, it is possible to show

using I-D nonlinear fluid theory. that the plasma wave phase shift 0 becomes negative for

small negative values of ,-,.. In particular, when ,,-'0  then initially E- - 0

and 0 = 0. As the plasma wave grows. 9 decreases to the point where 0 -= -r"2 at which

E = E,'/2. Beyond this point, 9 increases until stura ion is reached where 9 2

and E = E,,. This behavior is to be contrasted with the case Aw0 = 0, in which 0

increases monotonicallv from zero (Ez = 0) to r/2 (E. = Ea,).

This behavior may be understood more readily by considering the 1-D nonlinear. cold

fluid equations describing the evolution of the plasma wave bn = Sfi sin(Ao + 0), where

A¢= Akz + Awt and Aw =w 0 +v +AW 0 . In the limits (Awe/W <)2 1, I 2 1 and

,1. < 1, the normalized electric field amplitude E2 = cEz/(rncwpo) =h/ro and the

phase shift 9 of the plasma wave obey the evolution equations: 10"1

d -IWo a, L2 CoO (5a)dt, 4

dt 2 = wP0  32 z1

along with the constant of motion

3 32Au0  _ 16
E - -a, asing= 0, (5c)3 "wv0 3

where the intial conditions are given by kz = 0 and 0 = 0. Notice from Eq. (5a) that

saturation occurs when dEz/dt = 0 at 9 = r/2.

In the absence of a frequency mismatch, Aw 0 = 0, 0 increases monotonically from 0 to

i,-/' as indicated by Eq. (5b). Saturation occurs at 0 = <'/2 and Eq. (5c) gives the value

of the saturated electric field as E = (16ala 2 /3)'/ 3 . However, analysis' 0 of Eq. (5c) for

0 = rr/2 indicates that the maxinmum saturation field occurs for the optimum frequency

mismatch Awo t = -(9a1a/8)2/3 W po/2 at which point E '  = 4(ala2/3)/3 . Also notice.

that when Aw0  AweO'l, Eq. (5b) indicates 0 initially decreases until it reaches -r/2. At

this minimum, -/2, Eq. (5c) gives E. = E"'/2. The fact that 0 initially decreases

to the point 0 -r/2. for the case where ,wo 0 is important in the following

discussions.

Qualitatively. the diffractive properties of the radiation beanis in the PBWA may be

examined by considering the effective index of refraction for each beam. This is done by a

miethod idn.iical to that used previously in tlie discussion of relativistic optical guidin , 4



except that now the source current in the wave equation includes the density oscillations

of the plasma wave, J_1 -cca±(no 6 n). The wave equation is given by

2 U: PO 0

C a2 2 a - P ± s i n ( A- ± L) ,

where a1 = a, + a2. In short, the ID limit of the Eq. (6) is taken assuming a - exp(@O)

and then Eq. (6) is divided by the phase factor exp(ib) of either beam 1 or beam 2. The

effective index of refraction is then obtained by averaging over a period of the radiation

beat phase AP. Neglecting relativistic effects, the effective index of refraction for each

beam is given by

771 n0- -- (sinl- 1 coss?), (7a)
2wl 2n0 Ia.,

Le 2o 16h I ailI
2w 2 2n0 Ia, I (sin0 + icos0). (7b)

In the above expressions, the first term on the right (the unity) represents vacuum diffrac-

tion whereas the terms proportional to 16iTi represent the diffractive properties of the

plasma wave. The imaginary terms in the above expressions indicate power is being ex-

changed between the radiation beans and the plasma wave. (Notice that near 0 0. Eqs.

(Ta) and (7b) indicait povner is being transferred out of the higher frequency field and into

the lower frequency field, as is the case for a Raman scattering process.)

First of all, notice that in deriving the above expressions for 771,2, averages were taken

over a period of the beat phase. This effectively removes any information on the length scale

of the plasma wavelength and, hence, only the global properties of the radiation envelopes

are described by the above expressions. Any behavior occurring on the plasma wavelength

scale, such as the tendency for the radiation beams to break up into optically guided

beamlets, has been removed by such an averaging. Secondly, notice that the focusing effects

of the plasma wave on the global behavior of the radiation beams is strongly determined by

0, i.e., the shift in phase of the plasma wave away from the phase of the radiation beat wave.

For example, near saturation, 0 = 7r/2, the plasma wave tends to defocus the radiation

beams, assuming Iti-I - exp(-r 2 /r2) and laIl/laI - 1. On the other hand, 0 = -7r,'2

implies that the plasma wave leads to enhanced focusing of the radiation beams. (Recall

from the above discussion that 0 = -7r/2 when E. = E"'12 for the case ,-o .-- -

In general, both the amplitude ]biln and phase shift 0 will be functions of radius r (for

example, plasma waves on axis may tend to saturate in a shorter distance than those al

the edge of the radiation beams) and determining the diffractive effects of the plasnia

• m m



wave ii ot so st raivhtforwarul. The above miodel illustrates the imlport ance of tie globa

'hiavior of the radiation envelopes on the pihase shift 0, however. dveerinratiori of tHie

;iiait it ative behavior of th let'iationi envelopes requires miore detailed calculations.

Numerical stuidies of the focusing efects of thle Jplasia wave iii the 11 BXA have been

perforn ied by (;i b hon and fie 1 .7 In t heir analyvsi s relativistic focusin rigeets have teen

neglected and any enhai~ern.nt in the diffractive properties of the radiation heaiils; i> due,

solely toS rst espouse of the pilasma wave. In deternirng thle rlenvitv regioni"e

of thle plasmna wave. however, the dynamics of -riergv exchange b~et ween thle plasma wave

and thle raW at ion beams. md idzing c ascadhing to modes of frequen cy &, - -,' Lc (where.

I is an integer), are calculated self-consistent lv. To) st udy thle focusing propert ie ' (if thle

radbit i (n beams, Gibbon and Bell derived en velope equations for each irad iat i ii nilN le

frequency .,I In (leriving t hese envelope equations, however, average, wvher, taiken ovr the

heat frequntcy -- :' and. hence, anyv structunre in the ra~iat ion en ucI ope occtirrii rin

a lengthi scale Ap is effectively remved (as is disc-ussed abovek t ibbori anrd Bell fotiid that

lie f Icuing effects of the plasmia wave on thle rwa~l a on Ieami envelope dependc st r oiil v on

lie intial frequnen cy misnmat clh A ' betwxeen t he radiaton Le-a t freqmincv an d thle ax ndcmi

plasina frequency. NNXhin Nwo 0. they founidc that resonant et iihn g to thle pl asi a wavxe

cauisedl the radiation ieani envelope to diffract more rapid ly thIian it wouild in vacii in)

For small negative values of Awo (which corresponds to larger values, for thle satutratioil

aiiht ude of the plasma wave), however tMhe foun rd t Iiat reson ant coupli ng to t ie plasmr ia

wave may lead to enhanced focusing of the radiation beam envelop'-.

'Tis strong dependence of the focusing properties of the radiation oin thne frequency1

muismat ch Aw . as ob~served by Gibbon and Bell mnay be physi cally inderst ood bv con-

s idhering thle small scale structure of the radhiat ion lbeani envelope. As discussedl above, a

large amipli tude plasmia wave tends to break up thle radiation hbeani into lbeanilet s oif lenit

\T -2. XX'he Aer o 0. thle plasmna wave quickly reaches its saturation aniphit 1ude ( a

rel at ivel v short (list anice behinrd thle radiation beaux hiead)t and thle pl asnia wave- is thii

90 out oIf phase with the radiation beat wave. At thle sat uration point where 0 -- T2

Ire, plasm1a wave is I)l~hased Such that it heads to enhanced diffraction (If the radiat ion beat
wave.,Ila is, tepekoficesdentyi h plasmia wave density variation coincide

with peaks of the radiation al (72 envelope, thus causing the radiation 101 1 0" envelope

peaks, to diffract more rapidly. This is illust rated schieruat icallY iii Fig. -,.

Pir sm aul iegat i e va tis (of Nurj howe ver, sat urat on o: the pl asria wa xe is prit on ged

to . point fir-t her behind the radiation bearn head arnd, initially. 0 decreases ( becomes



nt",ttI v 1.F(' t e it:O t en 7 wh n 1.- i < 2. At Ilic poilt

%vIeItr- 0 2. the pe'aks of decreasedl dlensityv in t le' plasiie %%-it\ev denityl variation1

co iiicilit' wit ] thlit peaks e)f t lit radliat ion (II - (1 ell ivel~p('. t hits (a'isi Ilg einicee f( -(isi l.g

d' I lie ra(Iiat ioni al a2 envelope peaks. 116is is illust rated WcincatIicahlv iii Fig. 3. Henice.

aprpnratc choices for thle frequenicy miismiatcih A~'0 may leadl to eeticallv guielel leamilet

reizeeiS AMic crrf'sp)nud I"e the peaks of the radiationi a 0 O, enlvelope. Thie envelopec

eeielati ems used iii thle analysis of (ibbon and Bell' hio~vever, arm' ive'raizee over it phdsiiia

1 n'roe andi . heince. onily thle glolbal properties of tihe rali a' jon en veio-ipf' may he desc ribhed.

Any small scale, st ructure, such as the forim~ton of beanlets of lenigth A.,_ may ned 1w

eiescrilwee by thle im"N(4 of Gbbon and Iell.

IN'. Conicluisions

I hie al)(ove anialysis Iindicates that wvhen the plasiiia \vave in the lPlB\A ievstee

ai lfficivntl. lvIarve amiplituide such tiat Sn rio satisfies the inuiualjtv expressed ini Eq.

31, thle plasmna wave leads to peridic enhanced focusing of Hie radiat ion beam> ,. Iti the

aawsi c of relativistic focusing effect : the pl asin a wave tends toe break lipI thle radi at ion

leeaiii' Inlto axial beanilets of length I A 2 which remain optically giuideel. These nptirali

iguijdted beaiiilets occu-ir around the nima in the density o)scillatieei ()f thle Plasmia Wave'.

I 'IP Ii ct ions of thle radi at ions beams lmoaed in regions of increased den sit v experience

enhanced diffractionc. FoY(r the case of no initial frequency iiiisliiatA ii. A.,(, - (. thle plasmia

wave (quickly saturates at which poinit the plasma wave is 90 ou of phase A 7r 2

wvithI thle radiation beat wave. in thlis case thle regions aoum t t he peaks of thle rme i atiu

,a, -n2 en velpecx perience enhanced diffract ieli. Howev\er. fOr an opt i ma rile 466e fii t ial

free~~~iiencvP .iieia civ -.Wite ~bcme l tie ats t lee' plasnia wave elect nic

feld 1- increases. Whleni T- 2. then P 7 2. At I his, po(int thle iunina lin

l;ll~a wave density co)incide with the inaxiuiam in the miagniiihe f, J lie raediationi tol '7

eneop.Hence, when 0 = -r 2 it is p)ossible for thle pe'ak'~ in I lie F~ia iiin el7 0'

eivf'lep'toe preopagate as opt-ically guid~edl heaiiuets. This is iipeeraiit since it is lit'

peeuifrlernet ive force fron; the peaks in the~ eiivelope of the couiiieicl hieled I e, eia2 12 vhiiel

drive's the' plasni;e wave. III suichit -vway lhe resonantl lv eneraet ee Id~a= wavema iniv iel

ite eiiliaic'r focuisingc eif I le radiat ieii leanis. A ill er, ieeliu ih (e)flvi e el ie' fee liv

lpreeoee'tic, (,f th-' rarliatiei inl the 1PI3X\. reequire'" the'- elee'e 1 liile'li de it -1e'leeisif,'i

iii"eerel v.iti ch 1 in l I eires It, li ( eIlihi Tieed effects Je te'l fii'.ti eejelq~i(! ; 'Ilidi IV 11 le u wi th t lie'

eff~ect e e f t Ilil' rf-ceIiiciit lv eiieriI "d picri t 1 1 11ui \v \' hh I II,,(I 1 ileeh l --Ii ;I Ih-ee I lee ci;Ile; e' eef

el'-f Tjhiii. the r'(eJiiei ile in e' filf cal, 'ie~ 'ti l fu1 ljt'. '11'' ;t- the' feiicie e



radiati~w t,, mlet of size - 2.
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